
Advanced Hexagon DIAG
and getting started with baseband

vulnerability research

Alisa Esage
Zero Day Engineering

Chaos Communications Congress 2020

0d
ay

s.
en

gi
ne

er

About me
● Reverse engineer, low-level hacker, advanced

vulnerability researcher & exploit dev
○ Targets: previously Browsers, JS, Windows Kernel

& userland; now mostly Hypervisors
○ Reluctant speaker: RECON 2009, ZeroNights 2011,

PHDays 2014, POC x Zer0Con 2020
○ Hall of fame: Microsoft, Firefox, Oracle, Google, ...
○ Phrack 2015: “Exploitation of Microsoft XML”

● Passion for hard research targets, sprawling
technological stacks, ultra narrow edge memory
corruptions and non-trivial exploit engineering

○ it's my e-sport of choice
● My project: Zero Day Engineering

{0days.engineer}
○ training and (soon) deep vulnerability research

intelligence subscriptions

0d
ay

s.
en

gi
ne

er

About this talk
● Primary focus of this talk is on the modern state and system

internals of Qualcomm DIAG (QCDM), a proprietary baseband
management and diagnostics protocol which is included in
Qualcomm's baseband OS on all Snapdragon SoCs (SDxxx) and
MDM/MSM/SDM cellular modem chips

● Modern Qualcomm cellular modems run on a custom silicone
(QDSP6) with Qualcomm-proprietary ISA named Hexagon, in
which all the Qurt RTOS code is written, including DIAG handlers
and OTA vectors

● With a bit of generalized overview of baseband vulnerability
research for those who actually read the slides

0d
ay

s.
en

gi
ne

er

It started around 2 years ago...
During past 3 years I was working on virtualization and hypervisor vulnerability research and exploit
dev. In early 2019 I just completed a little research project with Microsoft Hyper-V [HYPERVISORS], was
getting bored with hypervisors and looking for something new and challenging to put my brain to for a
short-term distraction.

Basebands are challenging for the same reasons as hypervisors, though to a larger extent: the
technological stack is enormously extensive and varied; data flows traverse multiple privilege boundaries;
lowest level operations stand on the brink of pure Physics; a combination of ultra-low-level access
requirements with remote wireless attack vectors.

Basebands let no trivial debugging introspection, which an instantly fun challenge for low-level hacking
lovers like myself. On most modern OTS implementations JTAG is fused and the baseband OS doesn't
export any kernel debugging facilities (similar to iOS)

Also, I had an old USRP B100 (sic!) from my hackerspace foundation period, that needed some good usage

Let’s get started

Agenda

● The Big Picture 󾠮
○ Basebands technological

landscape
○ Generalized architecture &

threat models
○ Security research overview

● Hexagon baseband 󾠯
○ Architecture overview
○ Hardening observations
○ Reverse-engineering

● DIAG protocol 󾠰
○ Architecture & system

internals
○ Diagchar driver & Qualcomm

SMD/SMEM
○ New commands and

capabilities
○ diagtalk

󾠮, 󾠯: research directors,
C-level and everyone else
󾠯, 󾠰: security researchers,
software engineers, hackers

All materials in this presentation are
based on my own independent work,
views and analysis (no affiliations)

Part 1

The Big Picture

Cellular technologies 101

0d
ay

s.
en

gi
ne

er

C
el

lu
la

r
te

ch
no

lo
gy

la

nd
sc

ap
e

(U
E

si
de

)

0d
ay

s.
en

gi
ne

er

Cellular protocols
Generation Technology name Air interface Specifications Comments

1G NMT FDMA analog

2G GSM TDMA, FDMA GSM 04.07,
04.08

CDMA One / IS-95 CDMA Qualcomm

3G UMTS W-CDMA,
TD-CDMA,
TD-SCDMA

TS 24.007,
TS 24.008,
TS 44.018

CDMA2000 / IS-2000 CDMA Qualcomm

4G LTE OFDMA Partially same
as GSM+UMTS

5G 5G NR OFDMA

0d
ay

s.
en

gi
ne

er

Cellular protocols
Generation Technology name Air interface Specifications Comments

1G NMT FDMA analog

2G GSM TDMA, FDMA GSM 04.07,
04.08

CDMA One / IS-95 CDMA Qualcomm

3G UMTS W-CDMA,
TD-CDMA,
TD-SCDMA

TS 24.007,
TS 24.008,
TS 44.018

CDMA2000 / IS-2000 CDMA Qualcomm

4G LTE OFDMA Partially same as
GSM+UMTS

5G 5G NR OFDMA

0d
ay

s.
en

gi
ne

er

● L0 (unofficial): RF driver and hardware boundary
● L1: Physical layer
● L2: Data Link layer
● L3: Network layer

GSM+ layers and 3gpp / ETSI standards

Generalized baseband architecture
+ threat model

0d
ay

s.
en

gi
ne

er

TEE (TrustZone / SEPOS)

Basebands: architecture + threat models (1)

Application OS RTOS core Management prtcls Cellular stacks

3G, etc.

UMTS

CDMA2000

AT command handlers

Hayes & v.25

Vendor extensions

Vendor-specific

Ex.: DIAG / QCDM

Ex.: QMI

2G

GSM

CDMA One

Core interface to AP

Shared memory

I/O

???

Note: INCOMPLETE!

Interface handlers

Vendor-specific

Universal

SoC peripheral drivers

I/O

Remote OTA

SMC handlers Trustlets

Local EoP (AP to MP)Local EoP (MP to AP)

Local E
oP (w

ithin A
P O

S
.)

Local EoP (AP to TEE)

0d
ay

s.
en

gi
ne

er

TEE (TrustZone / SEPOS)

Basebands: architecture + threat models (2)

Application OS RTOS core Management prtcls Cellular stacks

3G, ...

UMTS

CDMA2000

AT command handlers

Hayes & v.25

Vendor extensions

Vendor-specific

Ex.: DIAG / QCDM

Ex.: QMI

2G

GSM

CDMA One

Core interface to AP

Shared memory

I/O

Note: INCOMPLETE!

Interface handlers

Vendor-specific

Universal

SoC peripheral drivers

I/O

Remote OTA

SMC handlers

GPRS, Edge,
etc.

Network layer,
Data link layer,
Physical layer, RF

Data codecs

Media

ASN.1

Trustlets

Local EoP (AP to MP)Local EoP (MP to AP)

Local E
oP (w

ithin A
P O

S
.)

Local EoP (AP to TEE)

0d
ay

s.
en

gi
ne

er

TEE (TrustZone / SEPOS)

Basebands: architecture + threat models (3)

Application OS RTOS core Management prtcls Cellular stacks

3G, ...

UMTS

CDMA2000

AT command handlers

Hayes & v.25

Vendor extensions

Vendor-specific

Ex.: DIAG / QCDM

Ex.: QMI

2G

GSM

CDMA One

Core interface to AP

Shared memory

I/O

Note: INCOMPLETE!

Interface handlers

Vendor-specific

Universal

SoC peripheral drivers

I/O

RTOS

Local EoP (AP to MP) Remote OTALocal EoP (MP to AP)

SMC handlers

Data codecs

Media

ASN.1

CVE-2014-????: integer
overflow in SMC core
sanity

CVE-2016-5080: heap
corruption in ASN.1
parsing

Trustlets

CVE-2015-6639: QSEE
EoP via Widevine trustlet

Pwn2own 2018:
Samsung Exynos
Shannon GPRS
ACTIVATE_PDP_CONT
EXT_ACCEPT
(TS24.008)

Pwn2own 2017: Huawei
Balong Kirin CDMA
XSMS (C.S0015-B) BOF

Yes (related to mobile
phone carrier unlocking)

Probably yes & not
public (baseband to AP
escalation exploits are
cutting edge research)

Yes (leveraged for sw
debugger injection)

Local E
oP (w

ithin A
P O

S
.)

Local EoP (AP to TEE)

Baseband offensive research

0d
ay

s.
en

gi
ne

er

Baseband offensive research landscape: OTA
How to

● Fake base station based on SDR
○ Related: “IMSI catcher”

● Reverse-engineering modem fw
○ Medium to hard complexity
○ + static analysis

● Fuzzing
○ Live (in-memory or open device)
○ Emulated

Targets

● Implementations
○ Shannon, Kirin, Hexagon, Infineon

● Protocols, layers, specific functions

Hardware

● SDR: Ettus Research USRP, Blade
RF, etc.

● Advanced: Agilent 8960, CMU200,
etc.

● Dev boards
● JTAG tools

Software

● GSM: OpenBTS, YateBTS
● UMTS: OpenBTS-UMTS
● LTE: srsLTE
● CDMA: none

0d
ay

s.
en

gi
ne

er

Why Hexagon?
Initially Hexagon intrigued me due to the esoteric architecture. While majority of basebands are based on
ARM, Qualcomm took the less-easy path of developing a novel MP architecture; unlike some other mobile
vendors who take ARM specs, burn it to a slightly customized silicone and brand it as a novel chip (yes, we
see it, and eagerly scoff at your marketing bullshit). So they developed a custom ISA, and then they built a
custom DSP silicone from scratch for it.

This is a *major* business investment move that surely must be for good reasons. Qualcomm chips
dominate the mobile market by a wide margin. This vendor cannot be expected to take such major risks
based on a fancy whim.

Hexagon is a DSP, not a CPU. It’s a different world vs x86/ARM/MIPS, and that world is the future. (More
on this later)

Cursory reconnaissance indicated that Hexagon basebands are so closed and hardened [MODKIT] that it
would require an advanced exploit to even begin building your own custom debugger for it

Should be fun enough!

Part 2

QDSP6 Hexagon

0d
ay

s.
en

gi
ne

er

One month
As soon as I decided to focus on QDSP6 Hexagon baseband, I set a rigid time box of one month to the
reconnaissance project, and started research. It was my first exposure to basebands and cellular protocols.

As usual, I started my research with a systematic review of all available security publications (1.5 count
in this case), analysis of vendor's security advisories, studying all available official documentation, SDKs
and potentially related open source code bases. I then performed deep technical analysis of all publicly
documented security bugs in basebands, set up a research platform with OpenBTS and USRP, and skimmed
through 3gpp specifications.

Concurrently, I took out the modem binary from the firmware of my test device (Nexus 6P with angler
Android and MSM kernel) and started reverse-engineering it.

Typically my goals in preliminary reconnaissance projects: 1) gear up and build a research platform, 2) map
out attack surfaces, and 3) find at least one good zero-day bug. I quickly completed 1 and 2 and stumbled
at 3, and realized that it was even harder than I expected.

0d
ay

s.
en

gi
ne

er

Qualcomm, why so hard?
QDSP6 / Hexagon

● Unfamiliar arch
○ VLIW, closer to GPU than CPU
○ very different from x86/ARM/MIPS

● No decompiler
○ Only disasm

● No QEMU full system emulation
○ Want!

● No binary patch diffing

Vs.

● Samsung Shannon (for example)
○ On demand memdumps, downloader

mode, familiar architecture, plenty of
log strings, decompiler, binary diffing

Hardenede

● Live introspection
○ Off-the-shelf devices are fused and

hardened
○ Baseband RTOS runs on a separate

chip, protected by QSEE TrustZone
○ No debugging, no crashdumps, can’t

read mDSP memory
● Reverse engineering

○ Huge binary
○ No debug symbols
○ Obscure RTOS
○ Parts of code are compressed /

relocated
○ NO LOG STRINGS!!!

Hexagon 101

0d
ay

s.
en

gi
ne

er

 Snapdragon 820E

● HTC 10,
Galaxy S7

● 1st gen
AI engine
based on
Hexagon

[SNAPDR
AGON]
Qualcom
m®
Snapdrag
on™
820E
Processor
(APQ809
6SGE)
https://d
eveloper.
qualcom
m.com/d
ownload/
sd820e/q
ualcomm
-snapdra
gon-820e
-processo
r-apq809
6sge-devi
ce-specifi
cation.pd
f

https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf

0d
ay

s.
en

gi
ne

er

Hexagon: architecture properties

https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor
[HEXAGONDSP] https://developer.qualcomm.com/download/hexagon/hexagon-dsp-architecture.pdf

https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor
https://developer.qualcomm.com/download/hexagon/hexagon-dsp-architecture.pdf

0d
ay

s.
en

gi
ne

er

Hexagon: programmer’s view

[HEXAGONISA] https://developer.qualcomm.com/download/hexagon/hexagon-v62-programmers-reference-manual.pdf

https://developer.qualcomm.com/download/hexagon/hexagon-v62-programmers-reference-manual.pdf

0d
ay

s.
en

gi
ne

er

Why did they roll their own architecture???
The future of technology is all about optimized digital signal processing. Growing requirements for
graphics due to VR, ever increasing demands of media codecs due to online streaming, AI as in artificial
neural network processing and deep learning.

Especially AI. It's the technology which is evolving at break-neck speed, with multiple trends developing
concurrently. One of current trends is offloading ANN processing to end user devices as opposed to
running it in the cloud. While the need for specialized AI hardware has been around for a while, and is high
on the agenda of every major chips vendor on the planet; but with the offloading trend, it's further
narrowed down to the requirement of compact and cost-effective specialized chips that be plugged
into mobile devices.

Deep learning operates on huge matrices with rational numbers, at which common CPU architectures
are very bad. SIMD couldn’t solve this. Chipset vendors started working on specialized NPU architectures,
meanwhile software vendors under the pressure of market demands were forced to run ANNs on GPU. But
GPUs were not made for this. The need for specialized hardware for cost-effective ANN operations remains.

Result: Hexagon has virtually no competition as an all-in-one cost-effective and optimized DSP for cellular
signal transcoding, hardware-accelerated audio and video, sensor processing, and AI

Hardening

0d
ay

s.
en

gi
ne

er

“P
ro

du
ct

io
n-

fu
se

d”
 ?

[PRODFUSING]
https://pastebin.
com/DUEbnuTf

https://pastebin.com/DUEbnuTf
https://pastebin.com/DUEbnuTf

0d
ay

s.
en

gi
ne

er

Android kernel PIL, TrustZone, and the MBA

Analysis

0d
ay

s.
en

gi
ne

er

Qualcomm SoC software & dev ecosystem
Android MSM

● Android kernel with Qualcomm SoC
-specific drivers

● CodeAurora and android/kernel/msm

Shared Memory Device

● Core interface to communicate
Android with modem (maybe more)

QSEE

● Qualcomm’s TrustZone
implementation

● Modem runs as a trustlet

Hexagon SDK

● Tools and headers for developers on
Hexagon architecture

Dragonboard

● Open development board for OEM
prototyping

Hexagon runtime libs

● AP-side support for code that runs on
Hexagon processors

0d
ay

s.
en

gi
ne

er

Reverse-engineering the Hexagon firmware
Firmware extraction

● unify_trustlet
● pymdt

Disassembly

● Several IDA Pro plugins available
○ gsmk

● Primitive disassembly via Hexagon
SDK

○ objdump
● mDSP: missing sections with critical

OTA vectors code (decompressed &
relocated in runtime)

○ q6zip

Reverse-engineering analysis (mDSP)

● Start from some root points
○ RTOS task structs
○ Allocation primitives (a lot)

● IDA script to add the Qshrink’ed
debug log strings

○ After that you can locate interesting
code by grepping text

Debugging introspection

● None out of the box
○ JTAG – fused on production devices
○ Qcombbdbg – for obsolete ARM impls

with Diag R/W commands available
○ Possible via exploit

0d
ay

s.
en

gi
ne

er

W
he

re
 is

 m
y

lo
g

st
ri
ng

s?
??

● Majority of log strings
removed by linker-stage
tool Qshrink4, replaced
with an MD5 hash

● msg_hash.txt

0d
ay

s.
en

gi
ne

er

Diag subsystem funcs

0d
ay

s.
en

gi
ne

er

Mid-project reflections

Too hard for a 1-month project; serious vulndev is out of question

Can I still make something fun and useful within the time box
allocated?

Maybe enable debug logging? With textual strings, not just protocol
dumps. It should be fun to see what exactly the baseband is doing, and

it's not trivial, since the log strings are stripped away

Also: ramdumps!

0d
ay

s.
en

gi
ne

er

Trials & failures
Build & flash Android MSM kernel ✅

● Nothing special, just a regular cross-build

Firmware downgrades ✅

● Trivial

Build qcom fw ⚠

● Ran out of time, probably wrong sources
● Someone just confirmed in a private talk

that it’s possible, will try again

Ramdumps 🚫

● AP kernel callbacks are not there +
prod-fused?

Shady Q* diagnostic tools ❌

● QPST, QXDM, etc.
● Skipped this part

Dragonboard ❌

● Saved for later (maybe)
● For exploit dev you need debugging

introspection on exactly the attacked
device, not some abstract Qualcomm
modem chip

Lauterbach debugger ⚠

● Useless for prod devices, skipped
● Will check again if I can bypass JTAG fusing

0d
ay

s.
en

gi
ne

er

But still…

Debug logging is here in the binary code, surely it’s used somehow?

Can it be enabled opt-in? Where will it log to? Is it exported to Android
kernel?

DIAG protocol seems powerful for configuration, could it be the answer?

Part 3

QCDM DIAG

0d
ay

s.
en

gi
ne

er

Qualcomm Diag / QCDM
Overview

● Qualcomm proprietary protocol for
cellular modem RTOS management

● Alongside QMI and other Q protocols
● ~200 commands in theory

History

● Libqcdm / ModemManager
○ ~2010, partially reversed

● CCC2011, Guillaume Delugré
○ Diag message format + HDLC
○ Some interesting commands
○ Mostly irrelevant for modern

production devices

Applications

● High-level debugging for OEM devs
● Baseband firmware reconfiguration
● (Obsolete) powerful diagnostics tools

such as downloader mode, live
dumps, memory R/W

Offensive perspective

● Local EoP attack vector from AP
kernel to baseband RTOS

● Common scenario: mobile carrier
unlocking exploits

● Scenario #2: exploit to enable a
custom software debugger injection

0d
ay

s.
en

gi
ne

er

Diag, modern status (first order view)
Public info

● ARM-based
● RTOS REX
● Downloader mode*
● Memory R/W commands*
● Live snapshots*
● Directly accessible channel over

USB*

--

* may be still relevant for obscure OEM
devices on Qualcomm MDM/MSM chips

Current status

● QDSP6 / Hexagon -based
● RTOS QuRT
● No downloader mode*
● No memory RW*
● No live snapshots*
● No USB channel*

○ Possible to enable on some(?)
devices via boot settings

--

* relevant to modern production devices
(tested on Nexus 6P, expected on Google
Pixels and everything else)

0d
ay

s.
en

gi
ne

er

SIO task

Diag diagram

Android kernel

Diag ring buffer (RTOS)

DSM task DIAG task RTOS tasks

Specialization

SMDL???

Logging calls

Diag subsystem
handlersPacket parsing

Wrap log messagesDiagchar driver

Transport drivers

Masking & config

USB
SMD

Read/write SMD

Serial, UART, USB

SMD

Text message

Protocol dumps

Diag subcommands

Modem to APAP to modem

DIAG_CMD_*
Only basic cmds

DIAG_CMD_MSG
DIAG_CMD_HASH

D
rain

P
ut

Index

Out

Out

/dev/diag

0d
ay

s.
en

gi
ne

er

/dev/diag
Overview

● diagchar + diagfwd kernel drivers on
Qualcomm MSM Android kernel

Functions

● Support the Diag interface
● Multiplex Diag channel to USB or memory

device
● IOCTL interface to userland
● Masking of unnecessary Diag commands

Implementation

● Based on SMD/SMEM shared memory
device (MSM specific)

0d
ay

s.
en

gi
ne

er

TEE (TrustZone / SEPOS)

Where is DIAG + diagchar?

Application OS RTOS core Management prtcls Cellular stacks

3G, ...

UMTS

CDMA2000

AT command handlers

Hayes & v.25

Vendor extensions

Vendor-specific

Ex.: DIAG / QCDM

Ex.: QMI

2G

GSM

CDMA One

Core interface to AP

Shared memory

I/O

???

Note: INCOMPLETE!

Interface handlers

Vendor-specific

Universal

SoC peripheral drivers

I/O

Remote OTA

SMC handlers Trustlets

Local EoP (AP to MP)Local EoP (MP to AP)

Local E
oP (w

ithin A
P O

S
.)

Local EoP (AP to TEE)

0d
ay

s.
en

gi
ne

er

diagchar key points

0d
ay

s.
en

gi
ne

er

diagchar and diag protocol

0d
ay

s.
en

gi
ne

er

Diagchar and shared memory (SMD)

SMD/SMEM

0d
ay

s.
en

gi
ne

er

Qualcomm Shared Memory Device

0d
ay

s.
en

gi
ne

er

SMEM: entries and channels

Other stuff

0d
ay

s.
en

gi
ne

er

Qualcomm SoC drivers

Diag protocol

0d
ay

s.
en

gi
ne

er

Reverse-engineering the reverse-engineers
● SnoopSnitch (open source)
● Can enable protocol dumps on rooted

devices
● Sends an obscure blob of QCDM

commands through the harnessed
/dev/diag interface 👉🏻

● Changes baseband firmware
configuration

● Can you explain what exactly this
commands blob does to your mobile
phone?

● I got curious

0d
ay

s.
en

gi
ne

er

Diag commands: known and unknown

Command 146 (0x92) = qshrinked log
message hash

?

0d
ay

s.
en

gi
ne

er

Diag command format
0x7e (126) is another
DIAG token, not a
delimiter

0d
ay

s.
en

gi
ne

er

Diag subsystems
● Diagnostic system extensions for

baseband subsystems
○ ~100 subsystems + OEM reserved
○ Subsystems may register their

custom handlers with DIAG task
○ Packet is opaque

● DIAG_CMD_SUBSYS = 75
● struct {

○ u8 subsys_id;
○ u16 subsys_cmd;
○ payload (variable len) }

0d
ay

s.
en

gi
ne

er

Diag subsystems (2)
More:

18 = DIAG subsystem
subsystem

37 = DEBUG

250+ = OEMs

libqcdm

0d
ay

s.
en

gi
ne

er

D
EB

U
G

 s
ub

sy
st

em
?

0d
ay

s.
en

gi
ne

er

C
ra

sh
 in

je
ct

io
n

vi
a

D
ia

g

Examples

0d
ay

s.
en

gi
ne

er

SetupLoggingCmds.jar

0d
ay

s.
en

gi
ne

er

How do cellular protocol dumps work?
DIAG_CMD_LOG_CONFIG (0x73)

● Enable cellular protocol dumps
● Command format is partially

documented in libqcdm 👇🏻
● Op = subcommand
● Equipment ID

○ GSM (5), UMTS (7), TDSCDMA (13)

E
xa

m
pl

e
de

co
de

 o
f a

co

m
m

an
d

pa
ck

et

(S
no

op
S

ni
tc

h)

libqcdm

0d
ay

s.
en

gi
ne

er

What about message logs?
DIAG_CMD_EXT_MESSAGE_CONFIG
(0x7D)

● Enable/disable and configure textual
message logging

● Command format is undocumented
● Operates on subcommands

○ Set logging mask
● Logging mask

○ Applied bitwise& against reported
loglevel of message

○ Mask 0x0 disables all logging,
0xFFFFFFFF enables all

● SSID
○ Filter by subsystem ID
○ Not same as DIAG subsystems

Example decode of
command packet
(SnoopSnitch)

Enable all text
message logging on
all SSIDs (my code)

0d
ay

s.
en

gi
ne

er

Parsing incoming log messages
DIAG_CMD_LOG_MESSAGE (0x79/121)

● u8 cmd = 0x79
● u8 type
● u8 n_args
● u8 dropcount
● u64 timestamp
● u16 ssid
● u16 line
● u32 unknown
● … args: n_args-1 * u32
● ASCII log message string

DIAG_CMD_LOG_HASH (0x92/146)

● u8 cmd = 0x92
● u8 type
● u8 n_args
● u8 dropcount
● u64 timestamp
● u16 ssid
● u16 line
● u32 unknown
● u32 md5 hash of log message
● ...args

0d
ay

s.
en

gi
ne

er

Crash injection

Crash types:
0 = halt/panic,
1 = watchdog timeout,
2 = nullptr access,
3 = divide by 0
exception

● Didn’t work on my
Nexus

● On production devices
this is expected to
reboot the phone, no
dumps left

● Might (and probably
should) work on very
old or obscure
Qualcomm modems

diagtalk

0d
ay

s.
en

gi
ne

er

D
ec

od
ed

 d
ia

g
lo

gs

Conclusions

0d
ay

s.
en

gi
ne

er

Future work
Qualcomm Hexagon

● Other Qualcomm-proprietary
diagnostic protocols

● QEMU Hexagon (modern!) full
system emulation

● Software-based debugger for
prod-fused devices

● JTAG fusing bypass
● OTA vectors
● MP -> AP escalation
● Decompiler
● Binary patch diffing

Basebands: community research

● CDMA BTS software implementation
● Update osmocommBB a little bit
● Open-source cellular ecosystem

for the open spectrum
○ Technically, nothing prevents cellular

protocols from operating on
unlicensed radio bands

○ But basebands are locked to radio
bands via hardware capabilities +
firmware programming

○ Some mobile phones seem to support
2.4Ghz/5Ghz (bb) on paper

○ So it should be possible to
reconfigure the baseband radio layer

○ BTS on SDR makes no assumptions

0d
ay

s.
en

gi
ne

er

References
[CCC2011] Reverse engineering a Qulacomm baseband
https://fahrplan.events.ccc.de/congress/2011/Fahrplan/attachments/2022_11-ccc-qcombbdbg.pdf

[HEXAGONDSP] Qualcomm Hexagon DSP: An architecture optimized for mobile multimedia and communications
https://developer.qualcomm.com/download/hexagon/hexagon-dsp-architecture.pdf

[HEXAGONISA] Hexagon V62 Programmer's Reference Manual
https://developer.qualcomm.com/download/hexagon/hexagon-v62-programmers-reference-manual.pdf

[MODKIT] Exploring Qualcomm Baseband via ModKit (2018)
https://cansecwest.com/slides/2018/Exploring%20Qualcomm%20Baseband%20via%20ModKit%20-%20Peter%20Pi,%20XiLing
%20Gong,%20and%20Gmxp,%20Tencent%20Security%20Platform%20Department.pdf

[HYPERVISORS] Hypervisor vulnerability research: state of the art
https://alisa.sh/slides/HypervisorVulnerabilityResearch2020.pdf

[PRODFUSING] Leaked Qualcomm memo on production fusing https://pastebin.com/DUEbnuTf

[SNAPDRAGON] Qualcomm® Snapdragon™ 820E Processor (APQ8096SGE)
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf

https://fahrplan.events.ccc.de/congress/2011/Fahrplan/attachments/2022_11-ccc-qcombbdbg.pdf
https://developer.qualcomm.com/download/hexagon/hexagon-dsp-architecture.pdf
https://developer.qualcomm.com/download/hexagon/hexagon-v62-programmers-reference-manual.pdf
https://cansecwest.com/slides/2018/Exploring%20Qualcomm%20Baseband%20via%20ModKit%20-%20Peter%20Pi,%20XiLing%20Gong,%20and%20Gmxp,%20Tencent%20Security%20Platform%20Department.pdf
https://cansecwest.com/slides/2018/Exploring%20Qualcomm%20Baseband%20via%20ModKit%20-%20Peter%20Pi,%20XiLing%20Gong,%20and%20Gmxp,%20Tencent%20Security%20Platform%20Department.pdf
https://alisa.sh/slides/HypervisorVulnerabilityResearch2020.pdf
https://pastebin.com/DUEbnuTf
https://developer.qualcomm.com/download/sd820e/qualcomm-snapdragon-820e-processor-apq8096sge-device-specification.pdf

Q&A
Twitter: @alisaesage

E-mail: contact@0days.engineer

